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Abstract 

The present article synthesizes a general approach to the development of risk 

governance decision support systems, based upon the interdisciplinary dialogue 

between risk science and the complexity sciences.  A conceptual review of risk science 

and the three main schools of the complexity sciences (the Santa Fe School, the 

Stuttgart School and the Brussels-Austin School) is provided and addressed with 

regards to the new challenges faced by organizations in their need for adaptation to 

interconnected risk situations and the dynamics of risk in networks. 
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1. Introduction 

Risk is, currently, a central strategic problem for human organizations that face 

interconnected risk situations, difficult to quantify in their dynamics and threatening to 

the future sustainability of organizations (Hayashi et al., 2012). Risk can no longer be 

addressed in a reductionist approach, measuring each risk source separately and 

considering relations in terms of static correlation structures. 
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The linkages between risk situations change, risk sources can interconnect in 

unpredictable ways, nonlinearities and explosive dynamics, typical of nonlinear 

complex networks, can alter overnight strategic assumptions and strategic goals, 

invalidating an organization’s strategic choices, and demanding of the organization the 

need to quickly adapt to the new strategic situation, more than often in contexts with 

insufficent data and calculatory basis (Hayashi et al., 2012; Bremmer and Keat, 2010; 

Guilhou and Lagadec, 2002). 

The development of risk governance has become an organizational strategic 

urgency (Bremmer and Keat, 2010). Organizations must develop a risk governance 

structure able to: (i) promote integrated strategic risk management within the 

organizations, as a fundamental part of their strategic planning; (ii) guarantee that 

threat assessment and emergency procedures are in place and (iii) assure a functioning 

and effective risk sources’ monitoring system. Only in this way can organizations 

develop the resilience that they need to be able to face today’s risk situations. 

Supporting organizations in this effort, providing concepts and tools towards 

risk management, are three transdisciplinary fields: risk science and complexity 

sciences. The current article provides a risk science-based methodological approach to 

decision support systems for risk governance, resulting from the conceptual synthesis 

of risk science and the three major schools of the complexity sciences: Santa Fe School; 

Stuttgart School and Brussels-Austin School. 

In section 2., a review is made of different perspectives on risk and 

organizations, developed from risk science. In section 3., a brief conceptual review of 

the three main schools of thinking on complexity is provided, in connection with the 

problem of risk and complexity. In section 4., the new context that current risk 

governance faces is reviewed, in particular in what regards the interconnectedness of 

global risk situations, and decisional tools and approaches are synthesized from the 

previous sections’ work. In section 5., main conclusions are drawn in the form of a 

methodological approach to support organizations in building up risk governance 

decision support systems.  
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2. Organizational perspectives on risk and risk science 

The interconnected nature of risk that characterizes the current decisional framework 

of human organizations has brought about the need to readdress the notion of risk, 

into a workable notion that allows for the effective development of risk management 

tools even in unstable dynamics, for which large samples of historical data, in many 

instances, no longer provide for enough elements to anticipate sudden changes in 

probability profiles. 

Assessing risk in complex organizational frameworks that characterize the 

current world system has demanded of organizations a return to the foundations of 

scientific thinking on risk, and, in particular, to clearly distinguish between the 

identification of risk sources and exposures from the measurement toolbox used to 

assess/quantify risk. 

Risk science and the complexity sciences address such a foundation and make 

such a distinction, grounding the notion of risk in its conceptual root in the Medieval 

Latin term resicum, that synthesized three notions: danger/peril (periculum), 

opportunities (fortuna) and uncertainty (Gonçalves and Madeira, 2010). Thus, in risk 

science, risk is considered to be present in a systemic situation whenever there are 

threats and/or opportunities and uncertainty. It is up to risk measurement, then, to 

identify the threats and opportunities and to quantify the uncertainty (when possible). 

A systematic treatment of risk, developed from risk science, needs to clearly 

distinguish three phases of strategic risk assessment, which can be synthesized as 

follows: 

 Identification of the presence of risk: involves the recognition of the 

exposure(s) to risk by the organization, the identification of the risk 

sources and of the linkages between the different sources; 

 Evaluation of consequences: mainly tackled through scenario analysis 

and loss analysis; 

 Measurement process: calculating an appropriate risk measure. 
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We call this RCM approach (Risk Consequence Measurement approach). 

Applying the RCM approach, one can see that classical decision theory becomes 

effective whenever, in the R phase, the exposures can be completely laid out, in the C 

phase, the set of consequences can be exhaustively identified, and, in the M phase, 

probabilities can be assigned to each consequence, in this way, risk assessment and 

management is amenable to a quantitative scheme based upon traditional risk 

measurement theory, this is, however, only possible in systems with very specific 

dynamical processes, but it may breakdown once we deal with interconnected risk 

scenarios, a major point that will be in the next section, regarding the Santa Fe School 

and the risk of changing risk problem. 

Systemically, two conceptual extremes can be preliminarily assumed, as a 

working basis, to understand the different sources of risk in organizations: the risk 

coming from exogenous shocks and the risk generated by the system’s dynamics 

(Boldrin and Woodford, 1992). 

In linear systemic contexts, the accumulation of independent exogenous shocks 

allows one to address an evaluation of risk centered on a notion of probabilistic 

stability, dominated by a discourse in turn of averages (Prigogine and Stengers, 1986; 

Prigogine, 1962): the averages of the relevant systemic variables and the average 

dispersion in turn of these averages (notion of standard deviation). Organizational 

goals and risk management solutions should, then, address intended values for 

average exposures, properly discounted for risk. 

The scientific fundament for this approach to risk can be located in the principle 

of order of Boltzmann and in the law of large numbers (Prigogine and Stengers, 1986). 

Under the principle of order of Boltzmann, the average activity of a population 

corresponds to a leveling over the individual behaviors, such that the mean is 

representative of the population (Prigogine and Stengers, 1986). Under the (strong) 

law of large numbers, the mean of a sequence of independent and identically 

distributed random trials converges to the expected value, almost surely, when the 

number of trials tends to infinite (thermodynamic limit for populations or statistical 

ensembles). 
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The principle of order of Boltzmann and the law of large numbers are both 

based upon an incremental arithmetic thinking about risk, worked from the notion of 

noise and the additive accumulation of random shocks. This thinking on risk is, in 

particular, supported by another theorem (the central limit theorem), under which the 

sum of independent random variables with finite mean and variances tends 

asymptotically to a Gaussian distribution, for many general probability distributions of 

the variables in the sum. 

Together with the principle of order of Boltzmann and the law of large numbers, 

the central limit theorem influenced a working assumption that any dynamics, in 

strategic variables, relevant for an organization, could be modeled as arithmetically 

decomposable in a regular behavior added by a noise term with probability 

increasingly negligible for fluctuation values far from the mean, in accordance with the 

Gaussian mesokurtosis (Prigogine and Stengers, 1986). 

Chaos theory exposed, however, the possibility of occurrence of patterns of 

dynamical complexity signalized as random but generated (deterministically) by the 

systemic activity itself. Chaos theory, therefore, opens up, for risk science, the theory 

of endogenously generated risk, which comes from the fact that the systemic dynamics 

can be generative of risk, even in the absence of dynamically relevant exogenous 

shocks (Lorenz, 1995; Boldrin and Woodford, 1992). 

The emergence of chaotic patterns can be approached from three dynamical 

properties: the exponential divergence of small neighborhood intervals of any 

trajectory; a dense collection of cyclic trajectories and the mixing behavior (Peitgen, et 

al., 2004). 

The mixing behavior implies that the system’s trajectories visit the 

neighborhood of each periodic trajectory in a dense collection of periodic trajectories 

(the denseness means that each chaotic trajectory has, in a small neighborhood, a 

periodic trajectory), the exponential divergence, in turn, leads to dynamical instability 

with regards to each periodic trajectory, in such a way that one can approach the 

chaotic dynamics, in the system’s dynamics, in terms of permanent jumps between 

unstable periodic trajectories (Bradley and Mantilla, 2002). 
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The exponential divergence with respect to any neighborhood interval of any 

state at any given time leads to an exponential divergence of trajectories initially close 

to each other, this dynamical behavior is known as sensitive dependence on the initial 

conditions (Lorenz, 1995) and it is a source of uncertainty given finite limits in the 

reading and registering of any initial condition. On the other hand, a system with 

chaotic dynamics but also subject to exogenous shocks (chaos with noise) is such that: 

any small fluctuations coming from exogenous shocks are exponentially amplified 

(butterfly effect), so that even weak exogenous shocks alter irreversibly the future 

dynamics of the system (Lorenz, 1995). 

The chaos with noise models influenced the development, during the decades 

of 1980 and 1990, of a scientific thinking on risk in the organizations that defends that 

any organization must evaluate the risk associated with external unpredictable 

elements, but approachable from a dynamic incrementality (arithmetic risk), and, 

simultaneously, it must evaluate the risk associated with the possibility of chaotic 

dynamics that are, themselves, source of risk and that may also amplify any term of 

exogenous noise (geometric risk) (Lorenz, 1995; Stacey, 1995; Morin, 1998). 

Within such a scientific framework, risk management must take into account 

that dynamical instabilities and irregularities make part of what is the normal 

functioning of an organization, being linked to the processes of adaptive feedback that 

are proper of any complex adaptive system (Lewin, 2000). On the other hand, this very 

same structural instability was considered to be vital to the ability of the organizations 

to be continually creative and innovative (Stacey, 1992). 

Chaos theory was seen as providing for examples of dynamics that allowed one 

to simulate a basic organizational proper (Stacey, 1992; 1995): emerging 

unpredictability with patterns of order in randomness that show persistent dynamical 

structures, sustained by the vital dynamical flow of the system, such structures were 

exemplified, within chaos theory, by strange attractors (Lorenz, 1995): invariant 

structures of the chaotic dynamics, identifiable from the geometrization of the 

dynamical variables’ behavior, whose trajectory is situated in a bounded region of the 

system’s geometric space of states (phase space), the resulting geometric figure of the 



7 
 

invariant set shows a complex fractal geometry, composed by regularities and 

irregularities at different scales (Lorenz, 1995; Peitgen, et al., 2004). 

In the strange attractors there is, thus, a local dynamical instability and a global 

invariance, irregularity and structure at different scales (Peitgen, et al., 2004). These 

attractors can, in this way, be considered as the geometric product of the adaptive 

dynamics of the systemic organization, mirroring the need for the organization to 

conserve a structure and simultaneously to anticipate and solve problems, changing its 

behavior with strategic agility (Prigogine and Stengers, 1986). 

Another feature of chaos, also relevant for organization science, is the 

occurrence of feedback circuits at the level of the organization’s performance 

evaluation systems and risk management systems, such that the evaluation of a 

certain result triggers adaptive responses towards future results which, in turn, must 

be permanently reviewed in a strategic planning process that must incorporate a 

notion of agility at the level of the definition of general and specific goals to an 

organization. 

The feedback process, resulting from the strategic planning and subsequent 

monitoring is such that the projection about the future, developed by the organization, 

changes the strategic behavior of that same organization and, in turn, may change the 

future course of events. 

Thus, any risk management system inevitably leads to an antecipatory feedback 

cycle, in which the expectation and the organizational adaptive actions function as 

connectors of the strategic motion from the anticipated/projected future to the 

permanently actualized future of the organization. This type of computation, more 

complex in its probabilistic formalization, is approachable within quantum game 

theory (Gonçalves, 2012b). 

While chaos theory played a formative role with respect to risk science and to 

the perspectives on risk in the organizations, the wider field of the complexity sciences 

opens up conceptual tools and frameworks that may help risk science and risk 

management to address the current problems on risk governance that organizations 
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need to face. To better understand this point, it becomes necessary to review, first, 

some of the major conceptual lines of each of the three main schools of scientific 

thinking on complexity. 

 

3. The three schools of the complexity sciences and the problem of risk in the 

organizations 

The complexity sciences developed from the paradigmatic basis of the second 

cybernetics, coming from the interdisciplinary and transdisciplinary works of the three 

main poles/schools: the Santa Fe School, the Stuttgart School and the Brussels-Austin 

School. 

3.1. The Santa Fe School – adaptation and the risk of changing risk 

The Santa Fe School resulted from the works developed in the Santa Fe Institute, born 

out of the Los Alamos National Laboratory, in the 1980s. In the Santa Fe Institute the 

organizations are approached as complex adaptive systems (Holland, 1995; 1998; 

Lewin, 2000). The Institute’s research combines the theory of dynamical networks with 

nonlinear dynamics and adaptive computation (Lewin, 2000), which led, in the case of 

chaos theory, to a new class of models: the models of nonlinear dynamics and chaos in 

networks, whose theorization, case-based development and application to different 

systems (physical, biological and even social) is mainly due to Kaneko (Kaneko and 

Tsuda, 2001), who proposed coupled nonlinear maps as models of turbulence in the 

spatial and temporal dynamics of physical systems. 

These models came to expand the main problem of the validity of the law of 

large numbers, which may not necessarily hold for coupled nonlinear dynamical 

systems (Kaneko and Tsuda, 2001). Indeed, in the statistical analysis of chaos in 

nonlinear dynamical networks, there can take place an instability in the probability 

distributions that may fluctuate in accordance with an emergent feedback process 

between the mean state of the system at each moment and the statistical distribution 

of states, that is, the mean state and distribution influence each other (Kaneko and 

Tsuda, 2001), a process that did not take place in the standard examples of low 
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dimensional ergodic chaos, which made emerge invariant distributions (Prigogine, 

2001). 

Fluctuations and dynamical instability in distributions, linked to the adaptive 

behavior of complex adaptive systems and the nonlinear dynamical behavior of 

networks may provide for a useful theoretical basis to address the problem of 

instability in risk profiles, that is, the risk of changing risk (Doherty, 2010). 

In the unstable settings, that characterize today’s globalized and networked 

economies and societies, the risk of changing risk is a major problem for risk 

governance, and a major reason for its development. It becomes necessary to 

implement procedures and protocols to address unexpected sudden changes in risk 

profiles, in particular in what regards probability distributions (Doherty, 2010; 

Bremmer and Keat, 2010). 

The risk of changing risk, according to Doherty (2010), opens up a major 

insurability problem, in this regard, the author distinguishes between a two-stage risk 

framework: the first stage risk comes from changing risk profiles leading to unstable 

risk premia and fluctuating asset prices; the second stage risk, on the other hand, is 

the insurable risk, that is, the risk associated with a loss taking place or not. First stage 

risk is, according to Doherty (2010), uninsured, while second stage risk is insured 

through short term insurance contracts. Risk management strategies, tools and 

policies will, then, have to deal with the definition of a reasonable, and perhaps 

changeable, short term predictable horizon and possible breakdown moments of that 

same horizon, over which contingency plans and other adaptive measures may have to 

be put into place, in particular, in regards to changing asset prices and risk premia. 

One can illustrate well how network-induced exposures take place, in the 

financial case (Whitfield, 2008): as soon as toxic or high risk assets are introduced in 

many portfolios, and an expansive dispersion of the market for these assets takes 

place, then, all of the portfolios that did not invest in the high risk assets, but that have 

assets in common with the portfolios that did invest in the high risk assets, are still 

exposed to the risk of synchronized liquidity preference, that is, a great number of 
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investors closing their open positions and selling not only the high risk assets but the 

other assets as well. 

In this context, the adaptive problems that are worked upon in complex 

adaptive systems theory, may have to be expanded to deal with a risk coevolution 

process, since organizations have to adapt to a decisional context with “moving” 

decisional constraints and objective functions, so that organizations have to adapt to 

the decisional problems and to the risk that the underlying structure of those problems’ 

changes, changing with it the exposure to risk, the consequence set and the probability 

distributions. This is a major challenge for both complex adaptive systems theory and 

risk science. 

3.2. The Stuttgart School – anticipating the direction of the changing risk 

The Stuttgart School of synergetics, under the influence of Hakken, works with self-

organization processes that lead to the emergence of lower dimensional dynamics in 

high dimensional systems. One of the key operative concepts, on this matter, is 

Hakken’s slaving principle (Hakken, 1977), under which a system with a high number of 

degrees of freedom is able to generate emergent dynamics described by a small 

number of dynamical variables that represent dominant active degrees of freedom, 

whose dynamics operatively enslaves the remaining degrees of freedom, as a result of 

a process of systemic self-organization. 

For risk science, this school allows for an effective way to mathematically 

explore the risk of changing risk problem, since it allows one to address particular 

instances in which there may emerge slow moving degrees of freedom that come to 

act as control parameters and fast moving degrees of freedom that come to behave as 

order parameters, in this way, the system may undergo spontaneous and self-

sustained phase transitions (Püu, 1997), which is a property in common with many 

current risk scenarios. 

Synergetics offers, to risk governance, a relevant working tool: an organization 

should look at the risk sources for slow moving degrees of freedom, for these may 
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offer a greater predictability and they are key drivers of change, so that the direction 

of changing risk may be anticipated to a certain probabilistic degree. 

3.3. The Brussels-Austin School – the risk and complexity problem 

The third major school of thinking about complexity is closely linked in its fundamental 

concepts to risk science, since it places risk as an underlying concept necessary to 

understand complexity. Human organizations are conceptualized as open systems that, 

to survive, have to expose themselves to risk situations, consuming resources and 

generating adaptive dynamics for their systemic sustainability, which, in turn, are 

generators of new risk situations. 

The Brussels-Austin School was developed from Prigogine’s works and 

collaboration with two institutions: The Center for Complex Quantum Systems (at the 

University of Texas) and the Free University of Brussels. 

The conceptual basis on the relation between risk and the self-organization of 

complex systems results from the notion of dissipative structure introduced, within 

thermodynamics, by Prigogine and for which the author won the Nobel Prize of 

Chemistry in 1977. A dissipative structure is an open system that feeds upon energy 

and matter from the environment, dissipating energy in its self-organizing systemic 

activity (Prigogine, 1962). 

In conceptual terms, the notion of dissipative structure synthesizes a dynamics 

of survival linked to processes of (eco)systemic management towards an adaptive 

sustainability in a permanent game of aggregation and disaggregation. 

From a risk science standpoint, combining Varela’s thinking with Prigogine’s 

(Varela, 1997; Prigogine, 1962), one can work with the notion of dissipative structure 

as a system whose autopoietic dynamics leads to a survival far from a systemic regime 

of structural dissolution in a disaggregating flux (self-organization far from 

thermodynamic equilibrium). 

Organizations, worked from the concept of dissipative structure, can be 

considered as generative of systemic risk resulting from the adaptive response of 

survival before permanent threats of disaggregating dissolution. 
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This notion of organizations generating risk as a result of their activity was also 

recognized by Beck ([1992], 2000), regarding the process of growth and development 

of current economies and societies, and synthesized by the author under the notion of 

risk society. 

On a planetary macroscale, for the human system to work, it must consume 

energy and resources and this is a primary source of risk: resources must be consumed, 

energy must be generated and this places a pressure on the growth and development 

of the human system. Pollution, depletion of natural resources, environmental risk, all 

of the major environmental risks singled-out by the World Economic Forum (Hayashi et 

al., 2012) can be linked to the nature of any complex system whose growth implies the 

production of risk. 

On the other hand, human systems have developed to a point where risk 

management depends upon a market for risk, which is not limited to the insurance 

industry but has developed and expanded on a global scale due to the derivatives 

market. 

The derivatives market allows a greater flexibility in risk management through 

complex hedging operations, on the other hand, the derivatives market leads to a risk 

economy where exposures to risk are transferred within the financial system. 

One particular case was the subprime process of securitization of mortgage 

credit risk exposure, which fuelled the real estate market, but at the same time 

exposed the global financial system to that risk, through the exchange of high risk 

derivatives, whose risk impact was in some way hidden in investment funds (Whitfield, 

2008). 

The emergence of a risk economy implies a complexification of the dissipative 

structures notion, regarding the role of risk in the system’s autopoietics, since the 

system is not only source of risk and must not only expose itself to risk situations in its 

living activity, the system is organized in turn of a risk and sustainability problem 

complexified by the dynamics of risk production, distribution/dispersion and 

consumption. 
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The interest in a certain financial asset, for instance, depends upon that 

financial asset’s ability to repay its investors, and in order for an investment to yield 

high enough rates of return it must imply an exposure to greater risk. Investors with 

higher returns profiles are also “consuming” higher risk. 

In order to address the complex interconnected nature of risk situations, risk 

science needs new effective tools. In this regard, the concepts of the three schools 

(Santa Fe; Stuttgart and Brussels-Austin) provide for a basic groundowork upon which 

one may build applications that can be effectively applied to the current more complex 

contexts. It is to this latter point that we now turn. 

 

4. Tools for Risk Governance and the Three Schools 

The three schools of complexity may help risk science establish a basis for addressing 

the current risk problems that human organizations face. Following the three schools, 

there are two main elements that must always be taken into account: (i) the 

interconnectivity between systems and (ii) the adaptive processes. 

4.1. Interconnectivity and risk dynamics 

The interconnectivity between systems has structural components that may change at 

a slower pace and dynamical components that may change more quickly (as shown by 

synergetics). Transportation networks, for instance, have a less fluid structure than the 

internet, in which websites are created, connected and closed down, such that the 

network is permanently changing. There are, however, elements in the internet’s 

structure which are constitutive in the sense that they form building blocks that 

assemble the architecture upon which the internet is built, and there are elements in 

the internet’s structure that have emerged from its dynamics and that may 

characterize the internet in a structural sense. 

One example of the later is both the internet network and e-mail network 

topologies, which show a scale-free structure, characterized by a few hubs and a 

power law decay in the degree distribution (Ebel et al., 2002; Barabási and Bonabeau, 

2003). The hubs may facilitate the viral spreading of computer viruses, like the “I love 
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you” e-mail virus, which infected, in May 2000, more than 500,000 individual systems 

around the world (Ebel et al., 2002). Hubs are also preferred targets for cyberattacks, 

including, of course, those that want to spread viruses through the web. Affecting the 

internet traffic associated with a hub may affect the internet traffic of other target 

websites, denial-of-service attacks to hubs are, therefore, a considerable risk factor. 

Scale-free networks are also present in human transportation systems, which 

are also vulnerable at the hubs. On the other hand, the hubs play a key role in keeping 

the networks functioning, because they are centers through which most of the 

circulating traffic passes through from one place to the other in the network, therefore, 

hubs play a fundamental role in a network’s systemic sustainability. 

Scale-free networks’ examples illustrate that to address risk in complex 

dynamical networks one needs to address how the network is interconnected, in 

particular its topology, and how different topologies change the system’s dynamics as 

well as the system’s dynamical exposure to risk. The interconnectivity changes the 

dynamics because the dynamics proceeds from the connections, different 

connectivities may change adaptive behavioral patterns, for instance, depending upon 

the context, some network structures may be more resilient than others to certain 

environments and some may have particular vulnerabilities: the internet scale-free 

structure shows an adaptive agility, in particular in what regards the dispersion of data, 

news and knowledge, on the other hand, that same adaptive agility is based upon fast-

paced rhythms associated with network dispersal mechanisms that are fueled by the 

hubs’ traffic flow, this opens up the way for viral dynamics to take place. 

Viral dynamics in the web, include the dispersion of spam, the dispersion of 

computer viruses, spyware, malware, and other related problems for computer 

security. On the other hand, viral dynamics also include, for instance, the dispersion of 

behavioral patterns and viral videos. Viral behavior patterns include, for instance, viral 

consumption patterns or even viral dispersion of financial risk, an example of which 

was the generalized exposure of the “financial web” to toxic securities, in the subprime 

crisis (Taylor, 2012; Easley, et al., 2011; Bollier, 2009; Whitfield, 2008). 
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In evolutionary terms, viral dynamics are recognized as evolutionary 

accelerators, linked to processes of symbiosis and hybridization (Ryan, 2009).  

Independently of the particular cases of viral dynamics, there are general processes 

that can be identified and synthesized to a scientific research of these dynamics. Ryan 

(2009), in the context of evolutionary biology, identified the specificity of the 

evolutionary processes associated with viral dynamics by the term virolution. 

The two central evolutionary processes of virolution – symbiosis and 

hybridization – can be conceptually approached in regards to the evolutionary 

dynamics that are proper of nonlinear adaptive networks that involve processes of 

adaptive contamination (Gonçalves, 2012a; Holland, 1995; 1998). At the level of 

human systems, the adaptive contamination involves an inter-agent synchronization 

with changes of behavioral and cognitive patterns, such that, when facing certain 

environmental pattern conjugations and adaptive situations, the adaptive agents tend 

to produce the same responses, thus, replicating a complex of behavioral patterns 

(Holland, 1995; 1998; Kaneko and Tsuda, 2001). Adaptive contamination is not 

reducible, in this way, to a simple behavior imitation, but, instead, to the integration of 

behavioral schemata that lead to complex adaptive responses, incorporated in new 

cognitive patterns (Holland, 1995; 1998). 

Viral dynamics, in human networks, can be identified as taking place whenever 

there is a concentration, in a very short period of time, of the replication of the 

behavioral pattern, replication that becomes viral from the moment in which it 

accumulates a sufficiently strong critical mass to generate a self-sustained process of 

replication with geometric dispersion, such that, in the case of a chaotic system, the 

butterfly effect, itself, may be unstable, occurring a sudden acceleration in the 

dynamical sensitivity to disturbances. 

The viral process just described is autocatalytic (Eigen and Winkler, 1985), in 

the sense that it is the system itself that generates the critical mass necessary for the 

viral explosion, which starts to feed from itself, that is, the viral dispersion virally feeds 

the viral dispersion. Internet worms constitute good examples of this dynamics, 

starting slow and quickly speeding up as a critical mass is attained, in terms of the 
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number of infected systems, with an exponential growth phase, which slows down as 

the number of infected machines becomes saturated with fewer vulnerable machines 

left to infect1. The Witty Worm, however, following CAIDA’s report2, escaped this 

pattern, since it went into the viral growth phase within the first few seconds, infecting 

110 machines in the first 10 seconds, which is considered to be highly improbable and 

so evidence of pretargeting either through a hitlist or through previously compromised 

vulnerable hosts used to start the worm. 

The fast viral phase, however, is not the only statistical anomaly with the Witty 

Worm, if we order the number of infected hosts by country from the largest to the 

smallest, and plot it on a logarithmic scale with respect to the number of infected 

hosts (see Fig. 1 below) we obtain an almost straight line except for the first two 

countries, USA and UK, which show a significantly higher number of infections than the 

rest, which means that these two countries ended up being the main victims of the 

Worm (USA being the first location with the viral explosion). 

 

Fig. 1 – Country distribution of the number of infections. Source: CAIDA  

 

The UK effect may be a network connectivity effect coming from the USA, while 

the USA infection pattern may explained from the fact that the the worm targets a 

                                                             
1
 This is well documented in the CAIDA report: http://www.caida.org/research/security/witty/. 

2
 Report by Colleen Shannon and David Moore, hosted by CAIDA in the website: 

http://www.caida.org/research/security/witty/. 

USA 

UK 

http://www.caida.org/research/security/witty/
http://www.caida.org/research/security/witty/
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buffer overflow vulnerability in several Internet Security Systems (ISS) products, and 

US-based Internet Security Systems (ISS) companies’ products were primarily affected 

but they do not possess a sufficiently high number of overseas operations3. 

The occurrence of viral dynamics, in the networks’ evolutionary processes, can 

be generator of business opportunities, introducing a new dynamics of business cycle, 

with the possibility of sudden explosions in the business volume, but it can also be 

generator of systemic risk dynamics, with the possibility of occurrence of global crises 

with very rapid dispersion, leading to a high risk of systemic collapse (Ryan, 2009; 

Hayashi et al., 2012). 

4.2. Interconnected risk processes 

The interconnectedness of risk situations demands of risk governance the 

application of network analysis tools that promote the identification of interconnected 

risk processes. The World Economic Forum has addressed this matter operatively 

through the Risks Interconnection Map, a visual tool that allows one to identify such 

processes. 

In the 2012 version, the map is organized, from a survey to experts, in terms of 

five risk categories: economic, environmental, geopolitical, societal and technological 

(Hayashi, et al., 2012). For each category there is a center of gravity with the major risk 

situations linked with it, a number of critical connectors, and a number of weak 

connections (representing weak signals). In this way the exposure to a specific risk 

situation implies the indirect exposure to all of the critical connectors for that situation, 

such that, for instance, one can be faced with a loss associated with a geopolitical 

domain coming from a technological domain. 

Through the Risks Interconnection Map, one can see how experts are relating 

different risk sources. An example is the network that associates the global governance 

failure with cyberspace-related risks, the connectivity of the local network is shown in 

the following figure 2, drawn from the Risks Report (Hayashi, et al., 2012, p.25)  

                                                             
3 A factor that was pointed out in the previously mentioned CAIDA report. 
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Fig. 2: Risk Network relating the cyber risk to the global governance failure. Only the connections and 

categories are shown (G = geopolitical, T = Technological). Source: World Economic Forum 

 

The figure above shows only the connections, without any grading in terms of 

connection intensity. Considering only the connections, one already can extract 

relevant risk measurement procedures, by applying basic graph analysis tools.  

Indeed, in a first analysis, one can consider, three numbers: (i) the number of 

nodes that are before global governance failure; (ii) the number of one-link neighbors 

of global governance failure, which constitute the most direct triggering factors of 

global governance failure, and (iii) the number of risk sources that reach the global 

governance failure node by more than one path. This provides for a triple 

characterizing the local risk network, in this case, one might count (6, 5, 4). The first 

number is the more straightforward to explain, there are six risk situation types in the 

network interconnected in paths to global governance failure. 

Regarding the second number, the World Economic Forum has identified five 

risk sources with direct links to global governance failure: terrorism; cyber attacks; 

critical systems failure; massive digital misinformation and failure of diplomatic conflict 

resolution. Outside this list is the massive incident of data fraud or theft which has only 

an indirect connection to global governance failure. The five direct links, coming from 

the above five risk sources, can constitute direct sources of global governance failure, 

in particular if they take place simultaneously. 
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The third number in the triple depends upon the directions that one may 

assume in the connections, different experts may propose different directions for the 

connections and the result will be different. We are using the following: 

 

Fig. 3: Reviewed network with directions (the connectiom ‘a -> b’ means a may cause b, while simple 

connection ‘a – b’ means bidirectionality in causality (a can cause b and b can cause a)). 

 

The third number tells us how many nodes are there that directly as well as 

indirectly affect global governance failure. Cyber attacks have more than one path to 

global governance failure, terrorism also, because, not only is it directly linked to 

global governance failure, but an increase in cyber terrorist activities may lead to cyber 

attacks which, in turn, are directly, as well as indirectly, linked to global governance 

failure. Failure in diplomatic conflict resolution can also lead to cyber attacks and, 

therefore, to governance failure (a local example was the attacks on Estonia (Davis, 

2007)). All the nodes, except for massive incident of data fraud or theft and critical 

systems failure, have more than one path connecting them to global governance 

failure. 

The multiple paths open up the possibility of multicausality and domino-like 

effects. For instance, failure in solving conflicts through diplomacy may deteriorate 

relations between countries, leading to threats to global governance (direct 

connection in the network), but this threat can be amplified if that failure leads to 

increasing cyber attacks that lead to critical systems failure and open the road for 

further increasing terrorist activities, in particular cyber terrorism. 
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The quotient between the number of nodes that are before global governance 

failure and the number of nodes that are linked by more than one path to global 

governance failure gives us a measure of multicausality (which is between zero and 

one), it can be interpreted as a probability measure, measuring the probability that a 

randomly occurring risk scenario may lead, through multiple paths, to global 

governance failure. In this case, the number is high 4/6, so one has approximately 

66.7% probability of multicausality. One must take some care, in interpreting this 

probability measure, since it can only be interpreted as a conditional probability, 

conditional on risk scenarios in which the first event in the path triggers all of the 

subsequent events up to the threat to global governance being realized. 

To complete the risk analysis one might enumerate a number of relevant 

combinations of paths, since each combination naturally leads to a different scenario. 

Thus, the network becomes a tool for systematic scenario generation. 

Following the global governance failure risk network analysis example, one can 

generalize a methodology for interconnected risk situations’ analysis, in the form of 

the following four-step approach: 

1. Draw the network of risk situations (with the causality links); 

2. Calculate path-based risk measures; 

3. Enumerate the paths and build scenarios from there; 

4. Calculate probabilities and conditional probabilities for the different 

scenarios or simulate the risk scenarios in computer models that take 

into account the network structure. 

In the fourth and last phase, one applies methodologies that are proper of the 

complexity sciences, in particular, game theory, quantum game theory, agent-based 

models and nonlinear network dynamics models and/or network stochastic process 

modeling to simulate and evaluate risk dynamics. 

Regarding the modeling approaches, adaptive networks’ dynamics show a 

specific systemic structure, since their dynamical processes are, for the most part, 

discrete in state, but showing dynamical expected values that can be modeled by 
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continuous state processes (Gonçalves, 2012b). A great deal of relevant variables is, 

indeed, discrete, for instance: network traffic; the number of visualizations of a 

website, the number of people replicating a certain behavior pattern; the quantities of 

a given product sold; the shares of a company and the price of these shares. 

To deal with these cases, quantum game theory and quantum econophysics, 

may provide for an important modeling tool for complex systems’ modeling (Saptsin 

and Soloviev, 2009), since they allow one to combine adaptive behaviors with discrete 

state variables and continuous state dynamics (Gonçalves and Madeira, 2010; 

Gonçalves, 2012b). Furthermore, the quantum equations link directly the probability 

structure with the system’s structure and dynamics, which is effective in risk modeling 

(Gonçalves, 2012a; 2012b). 

There are already empirically testable applications of quantum games and 

quantum chaos to financial market modeling and to the modeling of competing 

networks of companies (Hanauske et al., 2009; Gonçalves, 2012a; 2012b). Thus, 

quantum complexity sciences, a field in which the Brussels-Austin school has focused 

its work upon, combined with conceptual elements of risk science and the three main 

schools on complexity science, may supply conceptual solutions and effective 

mathematical tools to support risk governance in dealing with the modeling phase of 

interconnected risk/situations’ analysis. 

 

5. Conclusions 

Organizations can no longer address risk from a local and reductionistic perspective, 

risk exposures must be addressed strategically and conjointly in their coevolving 

dynamics. The fact that the human civilization has become interconnected on a 

planetary level has led to an interconnectivity between risk situations, so that risk 

exposures depend upon a complex web in which different domains appear 

interconnected: economic and financial, environmental, geopolitical, societal and 

technological.  
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Within such a setting, risk management must be addressed at a key strategic 

level within organizations, which must develop a risk governance structure responsible 

for risk management, which must guarantee that mechanisms and procedures are in 

place for strategic risk planning, integrated risk analysis and risk monitoring 

procedures. 

The main result of the present work is a general approach to the development 

of risk governance decision support systems, based upon risk science and the 

complexity sciences. It is this approach that we now synthesize, as a main conclusion, 

in connection with the work developed above. 

One can address risk management processes in terms of an RCM (Risk 

Consequence Measurement) approach. The R stage of RCM involves the identification 

of risk sources and the linkages between these sources. As was addressed in the 

present work, at this level, one can apply the tools of interconnected risk situations’ 

analysis which include drawing the network of risk situations with respective causality 

links. At this stage, the application of methodologies from risk science and risk 

mathematics may be useful in synthesizing an initial general scenario analysis 

underlying the risk network structure, applying the graph analysis tools, one can build 

a preliminary network-based risk evaluation report quantifying a risk exposure 

associated with the interconnectivity of the network. 

The consequence stage (stage C) of the RCM approach involves the evaluation 

of loss distributions, associated with different risk scenarios. At this stage, the 

application of the tools of interconnected risk situations’ analysis may be useful to 

produce scenarios from the risk network, and to address possible measures. At the end 

of this stage, plans regarding measures to be taken for adverse scenarios should be 

produced with consequences for the organizations’ management. 

The third stage (stage M) involves calculating probabilities and conditional 

probabilities, which can be addressed from the risk network structure. In this case, 

dynamical probabilities and adaptive agent-based modeling may be employed to 

address the possibility of changing risk dynamics. Quantum game theory can be useful, 

since it allows one to obtain equations for probability structures and dynamics directly 
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from the assumptions regarding the system’s decisional structures and network of 

relations, from where one obtains not only a family of probability measures but also an 

appropriate dynamics for probability dynamics (changing or coevolving probability 

structures). 

In this way, risk measurement, risk dynamics’ analysis and action plans can be 

built towards an integrated risk planning at the risk governance level of analysis. 

Future academic work in this area may also be applied with decisional consequences in 

risk science research, that is, the methodology proposed here is also adaptable to 

academic research. 
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